

Exploiting Multiple Translation Resources for English-Persian Cross Language Information Retrieval

Hosein Azarbonyad Azadeh Shakery Heshaam Faili

September 2013

Electrical and Computer Engineering Faculty - University of Tehran

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work

1

Hosein Azarbonyad

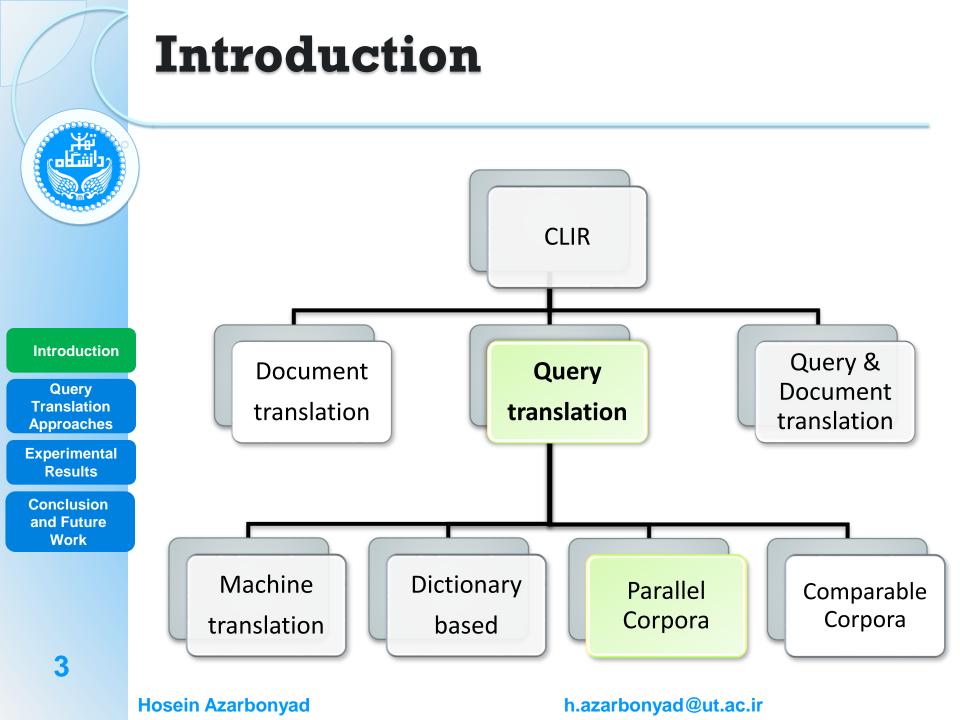
Introduction

CLIR

- Expressing queries in one language and retrieving documents in another language
- Main problem:

Introduction

Query Translation Approaches


Experimental Results

Conclusion and Future Work

- Difference between query and documents language
- Solution:
 - Translation

Hosein Azarbonyad

- Introduction
- Query Translation Approaches
- Experimental Results
- Conclusion and Future Work

- The most used method for extracting translation knowledge from parallel corpora
 - IBM model l
 - Simple and effective
 - This method is used in this research
- Main problem
 - Considering words to be independent

- Main problem of IBM model 1
 - Considering words to be independent
 - This assumption is not realistic

Introduction

Query Translation Approaches


Experimental Results

Conclusion and Future Work

Example

- Query: "Anti cancer drugs"
- "drugs" has two different senses

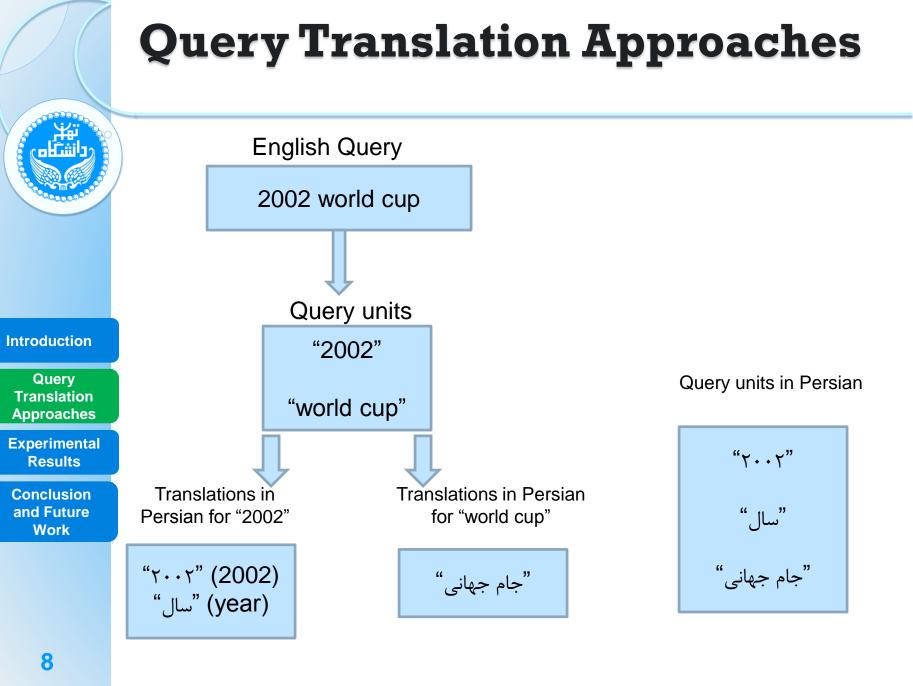
Hosein Azarbonyad

Hosein Azarbonyad

Phrase indexing

- 1. Indexing step
 - 1. Finding phrases in target language
 - 2. Considering a phrase as a single unit
 - 3. Indexing them

2. Query translation


- 1. Considering queries as combinations of phrases and single words
- 2. Translation phrases as well as single words
- 3. Retrieval
 - 1. Using BM25 method for calculating similarities of documents and queries

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work

Hosein Azarbonyad

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work Phrase based translation re-ranking

1. Query translation

1. Finding translation of each query word using the translation knowledge extracted by IBM model 1

2. Re-weighting and Re-ranking

- 1. Finding phrases in query and translating them
- 2. Considering phrases as bags of word
- 3. Calculating phrasal score of translation candidates

$$S_{ph}(f, Q_e) = \frac{\sum_{\substack{ph \in Q_e, \\ f \in ph}} P(ph|Q_e)}{\sum_{v \in Can} \sum_{\substack{ph \in Q_e, \\ v \in ph}} P(ph|Q_e)}$$

4. Re-ranking translation candidates based on phrasal scores and translation probabilities

h.azarbonyad@ut.ac.ir

Hosein Azarbonyad

	Que	ry Tr	ansl	atioı	n App	roach	les		
تهبر دانشگاه	Eng	llish Query	/	Translations of "world cup"					
	2002 world cup				Word	Translation probability	Google translation		
Translations of "cup"				جام جهانی	1	World cup			
	Word	Translation probability	Google translation						
Introduction	فنجان	0.46	cup	S	$S_{ph}($ جام $) = P($	wor جام جهانی	$rld \ cup) = 1$		
Query Translation	جام	0.4	cup						
Approaches	ليوان	0.14	glass	3	$S_{ph}($ جام جهانی) = $P($ جهانی) = (جهانی) = $(P_{ph}(ph))$				
Experimental Results						1			
Conclusion	Re-ranked	Translatio	ons of "cup	o" S	$S_{ph}(z, Q) = \frac{1}{1+1} = 0.5$				
and Future Work	Word	Translation probability	Google translation		Re-weightin	g: S(جام) =0).4 + 0.5=0.9		
	جام	0.6	cup						
	فنجان	0.31	cup						
10	ليوان	0.09	glass						
Hosein Azarbonyad				ł	h.azarbonyad@ut.ac.ir				

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work

- Translation resource combination
 - Weighted linear combination

 $P(f|e) = \lambda * P_{R1}(f|e) + (1 - \lambda) * P_{R2}(f|e)$

 R1 and R2 could be either dictionary, parallel corpus or comparable corpus

Hosein Azarbonyad

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work Datasets

• Hamshahri

- Used in CLEF-2008 and CLEF-2009
- About 166,000 documents in Persian
- 100 queries in Persian and English
- Persian task of CLEF-2008:
 - Retrieving Persian documents from English queries

h.azarbonyad@ut.ac.ir

Hosein Azarbonyad

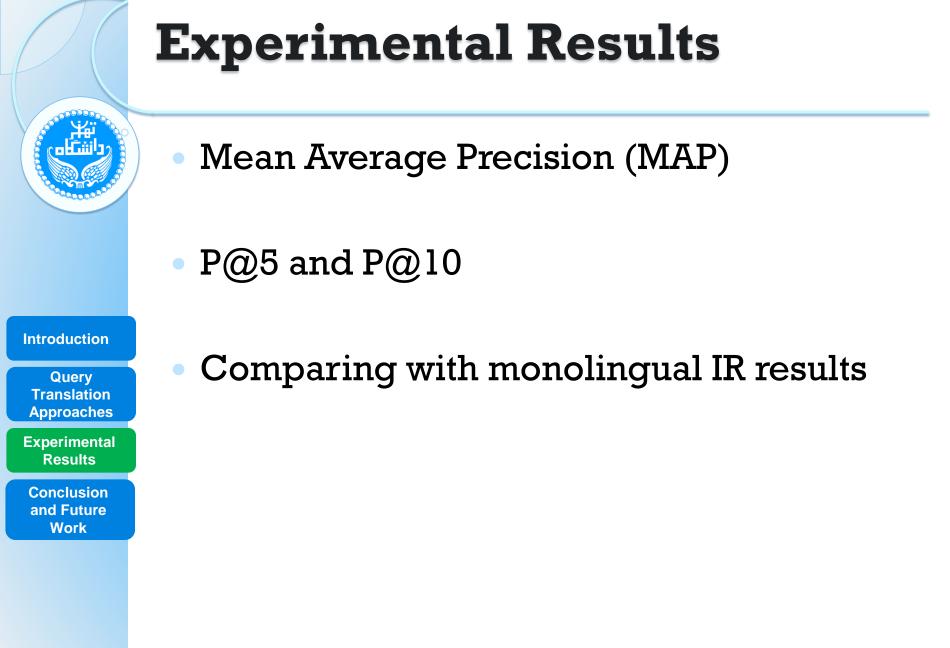
Datasets

- Tehran English Persian (TEP) parallel corpus
 - Constructed from movie subtitles
 - About 4 millions word in English and Persian

Introduction

Query Translation Approaches

Experimental Results


Conclusion and Future Work

UTPECC comparable corpus

- Constructed from news published in Hamshahri and BBC agencies
- Consists of about 10,000 English documents and 5,000
 Persian documents and 15,000 alignments between them
- Arianpour online English-Persian dictionary
 - http://www.arianpour.com/

Hosein Azarbonyad

h.azarbonyad@ut.ac.ir

Hosein Azarbonyad

Retrieval method

Weighted Okapi BM25 method

$$w(f_i, q_j) = \frac{1}{N} \frac{p(f_i|q_j)}{\sum_{k=1}^{N} p(f_k|q_j)}$$

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work

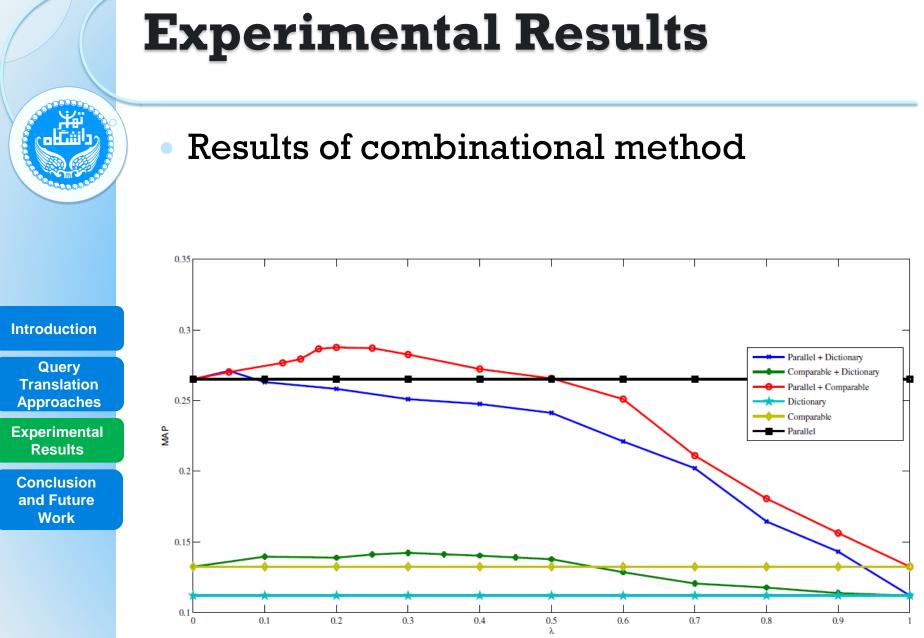
$$BM25Score(Q,D) = \sum_{q_i \in Q} \sum_{f_j \in Can(q_i)} IDF(f_j) * \frac{(k_1+1) * TF(f_j,D)}{k_1((1-b) + b * (\frac{|D|}{L_{avg}})) + TF(f_j,D)} * w(f_j,q_i)$$

Hosein Azarbonyad

Introd

Q Tran Appr

Exper Re


Conc and F uture Work

Results of different methods

	Method	MAP	%Mono	P@5	%Mono	P@10	%Mono
	Monolingual IR	0.412	-	0.702	-	0.643	-
duction	Dictionary based CLIR	0.138	34	0.216	31	0.204	32
duction	Comparable corpus based CLIR	0.148	36	0.288	40	0.266	41
Query nslation proaches	Parallel corpus based CLIR	0.265	64	0.44	62	0.418	65
erimental	Phrase indexing	0.272	66	0.446	64	0.429	67
esults	Phrase based translation re-	0.281	68	0.452	64	0.431	67
clusion Future	ranking						

16

Hosein Azarbonyad

Hosein Azarbonyad

-00900h	
	 Parallel corpus has higher accuracy than other resources in English-Persian CLIR
Introduction Query Translation	 Using phrases improves the accuracy of CLIR
Approaches	
Experimental Results	 Combining translation resources could
Conclusion and Future Work	improve the accuracy of CLIR

Conclusion

Hosein Azarbonyad

h.azarbonyad@ut.ac.ir

Future Work

Exploiting more and high quality resources for query translation

Introduction

Query Translation Approaches

Experimental Results

Conclusion and Future Work

- Using other contextual information such as correlations of translation candidates in query translation process
- Employing other methods such as Learning to Rank for combining translation resources

Thank you

